Solution to Peculiar Products

We are trying to find the value of the expression below. Note than the tan stuff approaches infinity as k increases. This is because 360/k approaches 0, and so 90- 360/k approaches 90. And as x approaches 90, tan(x) approaches infinity. So the reciprocal of the tan stuff gets smaller and smaller. So the side lengths approach zero while the number of sides increases. The shapes with more sides approximate circles. Their circumference equals the number of sides times the length of each side. K approaches 10 times more than the tan stuff. And so this will reach infinity like Exquisite Equations did.

\prod_{k=1}^\infin\Bigg(A\bigg(k,\,\frac1{tan (90\degree-\frac{360\degree}k)}\bigg)\Bigg)\\[16pt]

Leave a Reply