Recursive Renewals

You will need to do algebra, combinatorics, calculus, and trigonometry, and also use multiple matrices, to solve today’s challenge.

When you take a book out at the Leibniz Library, you must return it before the fine equation, f(x), rises above zero. If not, your fine is determined by the fine equation. The variable r represents the number of times you have renewed the book, beggining at zero. The variable d counts days and increases by 1 every day, beggining at zero. The variable t counts days and increases by 1 each day, beggining at 0. Each time you renew the book, the variable r in the fine equation, which begins at zero, increases by 1, and the variable t is reset to 0. You may not renew the book if someone else has it on hold or the fine equation is above 0. The probability that someone puts your book on hold on any given day is determined by the hold equation, h(x). How can you maximize the number of days you have with your book without paying anything?

f(x)=d^2+5d-7cos(r)+r^3-100\\[10pt] h(x)=\frac{t^2+3sin(t)+15}{100}

Leave a Reply