Captivating Circles 2

Today, we have a new captivating circle, and it is the first challenge to require the use of combinatorics. It also requires some trig and pathmaking.

Captivating Circle #2

Our second captivating circle is a circle with 7 points on its circumference. The points are equally spaced. Each point connects to 2 others through the circle and 2 others through a straight line. No points can connect to another through both a line and arc. The circle has circumference π. How many possible different sets of connections can be made? And of these, what is the highest possible distance that must be traversed to get between 2 points?